1. Novel mechanisms of MITF regulation identified in a mouse suppressor screen.
- Author
-
Vu, Hong Nhung, Valdimarsson, Matti Már, Sigurbjörnsdóttir, Sara, Bergsteinsdóttir, Kristín, Debbache, Julien, Bismuth, Keren, Swing, Deborah A, Hallsson, Jón H, Larue, Lionel, Arnheiter, Heinz, Copeland, Neal G, Jenkins, Nancy A, Heidarsson, Petur O, and Steingrímsson, Eiríkur
- Abstract
MITF, a basic Helix-Loop-Helix Zipper (bHLHZip) transcription factor, plays vital roles in melanocyte development and functions as an oncogene. We perform a genetic screen for suppressors of the Mitf-associated pigmentation phenotype in mice and identify an intragenic Mitf mutation that terminates MITF at the K316 SUMOylation site, leading to loss of the C-end intrinsically disordered region (IDR). The resulting protein is more nuclear but less stable than wild-type MITF and retains DNA-binding ability. As a dimer, it can translocate wild-type and mutant MITF partners into the nucleus, improving its own stability thus ensuring nuclear MITF supply. smFRET analysis shows interactions between K316 SUMOylation and S409 phosphorylation sites across monomers; these interactions largely explain the observed effects. The recurrent melanoma-associated E318K mutation in MITF, which affects K316 SUMOylation, also alters protein regulation in concert with S409. This suggests that residues K316 and S409 of MITF are impacted by SUMOylation and phosphorylation, respectively, mediating effects on nuclear localization and stability through conformational changes. Our work provides a novel mechanism of genetic suppression, and an example of how apparently deleterious mutations lead to normal phenotypes. Synopsis: An intragenic Mitf suppressor mutation was identified that terminates MITF at the K316 SUMOylation site, leading to loss of the C-end intrinsically disordered region (IDR). This mutation provides novel information on how the dynamic IDR mediates MITF localization and stability. The MITF suppressor mutation uncovers a novel mechanism of genetic suppression that opens unexpected insights into MITF subcellular localization and stability. The MITF suppressor mutation provides one explanation for how humans with knockout mutations in essential genes are viable and normal. An intragenic Mitf suppressor mutation was identified that terminates MITF at the K316 SUMOylation site, leading to loss of the C-end intrinsically disordered region (IDR). This mutation provides novel information on how the dynamic IDR mediates MITF localization and stability. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF