Clotet-Freixas, Sergi, Zaslaver, Olga, Kotlyar, Max, Pastrello, Chiara, Quaile, Andrew T., McEvoy, Caitriona M., Saha, Aninda D., Farkona, Sofia, Boshart, Alex, Zorcic, Katarina, Neupane, Slaghaniya, Manion, Kieran, Allen, Maya, Chan, Michael, Chen, Xuqi, Arnold, Arthur P., Sekula, Peggy, Steinbrenner, Inga, Köttgen, Anna, and Dart, Allison B.
Diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD) and progresses faster in males than in females. We identify sex-based differences in kidney metabolism and in the blood metabolome of male and female individuals with diabetes. Primary human proximal tubular epithelial cells (PTECs) from healthy males displayed increased mitochondrial respiration, oxidative stress, apoptosis, and greater injury when exposed to high glucose compared with PTECs from healthy females. Male human PTECs showed increased glucose and glutamine fluxes to the TCA cycle, whereas female human PTECs showed increased pyruvate content. The male human PTEC phenotype was enhanced by dihydrotestosterone and mediated by the transcription factor HNF4A and histone demethylase KDM6A. In mice where sex chromosomes either matched or did not match gonadal sex, male gonadal sex contributed to the kidney metabolism differences between males and females. A blood metabolomics analysis in a cohort of adolescents with or without diabetes showed increased TCA cycle metabolites in males. In a second cohort of adults with diabetes, females without DKD had higher serum pyruvate concentrations than did males with or without DKD. Serum pyruvate concentrations positively correlated with the estimated glomerular filtration rate, a measure of kidney function, and negatively correlated with all-cause mortality in this cohort. In a third cohort of adults with CKD, male sex and diabetes were associated with increased plasma TCA cycle metabolites, which correlated with all-cause mortality. These findings suggest that differences in male and female kidney metabolism may contribute to sex-dependent outcomes in DKD. Editor's summary: Diabetic kidney disease (DKD) progresses differently in males compared with females. Clotet-Freixas et al. report increased altered glucose and glutamine metabolism in primary human kidney proximal tubular cells from males compared with females. In mice with different combinations of sex chromosomes, the authors showed that male gonadal sex underpinned sex differences in kidney metabolism. Human kidney proximal tubular cells from females showed increased pyruvate, whereas those from males showed increased glucose and glutamine flux to the TCA cycle. In three human cohorts of different ages with or without diabetes, males showed increased serum TCA cycle metabolites, whereas females showed increased serum pyruvate that correlated with decreased all-cause mortality. These findings suggest that metabolism differences may contribute to sex differences in human DKD. —Brandon Berry [ABSTRACT FROM AUTHOR]