1. Deep-learning-based attenuation map generation in kidney single photon emission computed tomography.
- Author
-
Kwon, Kyounghyoun, Oh, Dongkyu, Kim, Ji Hye, Yoo, Jihyung, and Lee, Won Woo
- Subjects
SINGLE-photon emission computed tomography ,MACHINE learning ,SINGLE photon generation ,COMPUTED tomography ,DEEP learning ,CONTRAST media ,IMAGE reconstruction algorithms - Abstract
Background: Accurate attenuation correction (AC) is vital in nuclear medicine, particularly for quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) imaging. This study aimed to establish a CT-free quantification technology in kidney SPECT imaging using deep learning to generate synthetic attenuation maps (μ-maps) from SPECT data, thereby reducing radiation exposure and eliminating the need for CT scans. Results: A dataset of 1000 Tc-99m DTPA SPECT/CT scans was analyzed for training (n = 800), validation (n = 100), and testing (n = 100) using a modified 3D U-Net for deep learning. The study investigated the use of primary emission and scattering SPECT data, normalization methods, loss function optimization, and up-sampling techniques for optimal μ-map generation. The problem of checkerboard artifacts, unique to μ-map generation from SPECT signals, and the effects of iodine contrast media were evaluated. The addition of scattering SPECT to primary emission SPECT imaging, logarithmic maximum normalization, the combination of absolute difference loss (L
1 ) and three times the absolute gradient difference loss (3 × LGDL ), and the nearest-neighbor interpolation significantly enhanced AI performance in μ-map generation (p < 0.00001). Checkerboard artifacts were effectively eliminated using the nearest-neighbor interpolation technique. The developed AI algorithm produced μ-maps neutral to the presence of iodine contrast and showed negligible contrast effects on quantitative SPECT measurement, such as glomerular filtration rate (GFR). The potential reduction in radiation exposure by transitioning to AI-based CT-free SPECT imaging ranges from 45.3 to 78.8%. Conclusion: The study successfully developed and optimized a deep learning algorithm for generating synthetic μ-maps in kidney SPECT images, demonstrating the potential to transition from conventional SPECT/CT to CT-free SPECT imaging for GFR measurement. This advancement represents a significant step towards enhancing patient safety and efficiency in nuclear medicine. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF