1. Structure and Oxidation Behavior of NiAl-Based Coatings Produced by Non-Vacuum Electron Beam Cladding on Low-Carbon Steel.
- Author
-
Ogneva, Tatiana S., Ruktuev, Alexey A., Lazurenko, Daria V., Emurlaev, Kemal I., Malyutina, Yulia N., Golkovsky, Mikhail G., Egoshin, Kirill D., and Bataev, Ivan A.
- Subjects
MILD steel ,ELECTRON beams ,ENERGY dispersive X-ray spectroscopy ,SURFACE coatings ,IRON ,OXIDE coating - Abstract
NiAl-based intermetallic coatings were obtained using non-vacuum electron beam cladding on low-carbon steel. The structure of the coatings was investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The coatings mostly consisted of grains elongated perpendicular to the substrates, with a strong <100> texture along the grain growth direction. The coatings contained about 14 at. % Fe, which appeared due to the partial melting of the steel substrate. At the bottom of the coatings, an inhomogeneous mixing zone with an increased concentration of Fe was formed; at the "substrate–coating" interface, a thick layer with a Fe50-Ni25-Al25 at. % composition was observed. The samples exhibited weight gains of 0.1, 0.8, 2.14, and 3.4 mg/cm
2 after 100 h of oxidation at 700, 800, 900, and 1000 °C, respectively. The oxide layer contained α-Al2 O3 and θ-Al2 O3 , and the presence of iron atoms contributed to the formation of a small amount of spinel. During the oxidation process, a layer with a high Fe content (~60 at. %) formed along the boundary between the oxide film and the NiAl-based material, which had a positive effect on the formation of a non-porous "oxide–coating" interface. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF