1. Search for Joint Multimessenger Signals from Potential Galactic Cosmic-Ray Accelerators with HAWC and IceCube.
- Author
-
Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Avila Rojas, D., Ayala Solares, H. A., Babu, R., Belmont-Moreno, E., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., de León, S. Coutiño, De la Fuente, E., Depaoli, D., Di Lalla, N., Diaz Hernandez, R., Díaz-Vélez, J. C., and Engel, K.
- Subjects
GALACTIC cosmic rays ,NEUTRINO astrophysics ,ASTROPHYSICS ,COSMIC rays ,ASTRONOMY ,NEUTRINOS ,RADIATION - Abstract
The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF