1. Effect of Tomato Grafting onto Novel and Commercial Rootstocks on Improved Salinity Tolerance and Enhanced Growth, Physiology, and Yield in Soilless Culture.
- Author
-
Alqardaeai, Thabit, Alharbi, Abdulaziz, Alenazi, Mekhled, Alomran, Abdulrasoul, Elfeky, Ahmed, Osman, Mohamed, Obadi, Abdullah, Aldubai, Abdulhakim, Ortiz, Nathaly Rodriguez, Melino, Vanessa, Tester, Mark, and Pailles, Yveline
- Subjects
HYDROPONICS ,SALINE irrigation ,PLANT productivity ,VOLCANIC ash, tuff, etc. ,PHOTOSYNTHETIC pigments - Abstract
Grafting high-yielding tomato varieties onto stress-tolerant rootstocks can mitigate the adverse effects of saline water irrigation on plant tomato productivity in arid regions like Saudi Arabia. This study investigates the efficacy of grafting tomatoes onto both novel and commercial rootstocks to enhance salinity tolerance and its impact on growth, physiological parameters, and yield in a soilless culture system. The experiment involved two water quality levels, 2 (S1) and 4 (S2) dS m
−1 , two growth media types, volcanic rock (M1) and sand (M2), and six grafting treatments: Tone Guitar F1 non-grafted (G1) (commercial scion), grafted onto itself (G2), Tone Guitar F1* Maxifort F1 (G3) (commercial rootstock), and grafting the scion onto three novel rootstocks, X-218 (G4), X-238 (G5), and Alawamiya365 (G6). Growth, physiology, photosynthetic pigments, and yield improved with lower salinity (2 dS m−1 ) in volcanic rock and with the grafting treatments (G2–G6) compared to the non-grafted treatment (G1). The best results were achieved with the S1M1G5 treatment, where yield increased by 53% compared to the lowest yield in non-grafted plants grown in sand under higher salinity (S2M2G1). All studied traits were adversely affected under high salinity (S2) in sandy media, with the G1 treatment resulting in the lowest values for these traits. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF