1. Variable effects of transient Wolbachia infections on alphaviruses in Aedes aegypti.
- Author
-
Dodson, Brittany L., Pujhari, Sujit, Brustolin, Marco, Metz, Hillery C., and Rasgon, Jason L.
- Subjects
WOLBACHIA ,DENGUE viruses ,VIRUS diseases ,VECTOR control ,MOSQUITOES ,AEDES aegypti - Abstract
Wolbachia pipientis (= Wolbachia) has promise as a tool to suppress virus transmission by Aedes aegypti mosquitoes. However, Wolbachia can have variable effects on mosquito-borne viruses. This variation remains poorly characterized, yet the multimodal effects of Wolbachia on diverse pathogens could have important implications for public health. Here, we examine the effects of transient somatic infection with two strains of Wolbachia (wAlbB and wMel) on the alphaviruses Sindbis virus (SINV), O'nyong-nyong virus (ONNV), and Mayaro virus (MAYV) in Ae. aegypti. We found variable effects of Wolbachia including enhancement and suppression of viral infections, with some effects depending on Wolbachia strain. Both wAlbB- and wMel-infected mosquitoes showed enhancement of SINV infection rates one week post-infection, with wAlbB-infected mosquitoes also having higher viral titers than controls. Infection rates with ONNV were low across all treatments and no significant effects of Wolbachia were observed. The effects of Wolbachia on MAYV infections were strikingly strain-specific; wMel strongly blocked MAYV infections and suppressed viral titers, while wAlbB had more modest effects. The variable effects of Wolbachia on vector competence underscore the importance of further research into how this bacterium impacts the virome of wild mosquitoes including the emergent human pathogens they transmit. Author summary: In recent years, wild populations of Aedes aegypti mosquitoes in over a dozen countries have been deliberately infected with Wolbachia pipientis ("Wolbachia"); an intracellular bacterium that, in some circumstances, helps to curb the spread of mosquito-brone pathogens including dengue virus. But how does Wolbachia affect the ability of mosquitoes to become infected with and spread the many different viruses they encounter in nature? Here, we use transient somatic infections in Aedes aegypti to characterize the effects of Wolbachia on three different alphaviruses that cause illness in humans: Sindbis virus, O'nyong-nyong virus, and Mayaro virus. We find that transient Wolbachia infections have variable effects on these different pathogens, ranging from significant suppression of Mayaro virus to significant enhancement of Sindbis virus. Our research has important implications for the design of vector control strategies, and suggests further research is needed to understand how Wolbachia shapes the replication and transmission of diverse viruses in mosquitoes. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF