1. Social change innovations, citizen science, miniSASS and the SDGs.
- Author
-
Taylor, Jim, Graham, Mark, Louw, Adrienne, Lepheana, Ayanda, Madikizela, Bonani, Dickens, Chris, Chapman, Deborah V., and Warner, Stuart
- Subjects
SOCIAL innovation ,WATER quality management ,CITIZEN science ,BEHAVIOR modification ,SOCIAL change ,WATER quality monitoring ,ACTIVE learning - Abstract
The United Nations Sustainable Development Goals (SDGs) describe a course of action to address poverty, protect the planet and ensure prosperity for all (https://sdgs.un.org/goals). More specifically, SDG 6 clarifies how water quality, quantity and access are crucial to human well-being, and yet human activities are compromising water resources through over-exploitation, pollution, as well as contributing to the spread of disease. Globally aquatic ecosystems are highly threatened and concerted efforts by governments and civil society to 'turn the situation around' are simply not working. Human-created problems require human-centred solutions and these require different ways of thinking and acting to those behaviour patterns that are contributing to the challenges. In this paper, we first consider causal approaches to attitude change and behaviour modification that are simply not working as intended. We then explore enabling responses such as citizen science and co-engaged action learning as more tenable alternatives. SDG 6 has a focus on clean water and sanitation for all. The SDGs further clarify how the extent to which this goal can be realized depends, to a large extent, on stakeholder engagements and education. Through stakeholder engagements and educational processes, people can contribute towards SDG 6 and the specific indicator and target in SDG 6.b - Stakeholder participation. Following a three-year research process, that investigated a wide range of participatory tools, this paper explores how the Stream Assessment Scoring System (miniSASS; www.minisass.org) can enable members of the public to engage in water quality monitoring at a local level. The paper continues to demonstrate how miniSASS can contribute to the monitoring of progress towards Sustainable Development Goal Target 6.3, by providing a mechanism for data collection indicator 6.3.2. miniSASS is proving popular in southern Africa as a methodology for engaging stakeholder participation in water quality monitoring and management. The technique costs very little to implement and can be applied by children and scientists alike. As a biomonitoring approach, it is based on families of macroinvertebrates that are present in most perennial rivers of the world. The paper concludes by describing how useful the miniSASS technique can be for addressing data gaps for SDG 6.3.2 reporting, and that it can be applied in most regions of the world. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF