1. Conjugated polymers based on metalla-aromatic building blocks.
- Author
-
Shiyan Chen, Lixia Peng, Yanan Liu, Xiang Gao, Ying Zhang, Chun Tang, Zhenghao Zhai, Liulin Yang, Weitai Wu, Xumin He, Liu Leo Liu, Feng He, and Haiping Xia
- Subjects
CONJUGATED polymers ,BAND gaps ,ELECTRON transitions ,POLYCONDENSATION ,ULTRAVIOLET-visible spectroscopy - Abstract
Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress p-p stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of welldefined model oligomers, revealed the polymerization mechanism. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF