4 results on '"Guiyan Ni"'
Search Results
2. Genotype–covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model.
- Author
-
Guiyan Ni, M., van der Werf, Julius, Xuan Zhou, Hyppönen, Elina, Wray, Naomi R., and Lee, S. Hong
- Abstract
The genomics era has brought useful tools to dissect the genetic architecture of complex traits. Here we propose a multivariate reaction norm model (MRNM) to tackle genotype–covariate (G–C) correlation and interaction problems. We apply MRNM to the UK Biobank data in analysis of body mass index using smoking quantity as a covariate, finding a highly significant G–C correlation, but only weak evidence for G–C interaction. In contrast, G–C interaction estimates are inflated in existing methods. It is also notable that there is significant heterogeneity in the estimated residual variances (i.e., variances not attributable to factors in the model) across different covariate levels, i.e., residual–covariate (R–C) interaction. We also show that the residual variances estimated by standard additive models can be inflated in the presence of G–C and/or R–C interactions. We conclude that it is essential to correctly account for both interaction and correlation in complex trait analyses. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture.
- Author
-
Guiyan Ni, Cavero, David, Fangmann, Anna, Erbe, Malena, and Simianer, Henner
- Subjects
NUCLEOTIDE sequencing ,ANIMAL genetics ,CHICKENS ,LIVESTOCK breeding ,SINGLE nucleotide polymorphisms ,PREDICTION models - Abstract
Background: With the availability of next-generation sequencing technologies, genomic prediction based on whole-genome sequencing (WGS) data is now feasible in animal breeding schemes and was expected to lead to higher predictive ability, since such data may contain all genomic variants including causal mutations. Our objective was to compare prediction ability with high-density (HD) array data and WGS data in a commercial brown layer line with genomic best linear unbiased prediction (GBLUP) models using various approaches to weight single nucleotide polymorphisms (SNPs). Methods: A total of 892 chickens from a commercial brown layer line were genotyped with 336 K segregating SNPs (array data) that included 157 K genic SNPs (i.e. SNPs in or around a gene). For these individuals, genome-wide sequence information was imputed based on data from re-sequencing runs of 25 individuals, leading to 5.2 million (M) imputed SNPs (WGS data), including 2.6 M genic SNPs. De-regressed proofs (DRP) for eggshell strength, feed intake and laying rate were used as quasi-phenotypic data in genomic prediction analyses. Four weighting factors for building a trait-specific genomic relationship matrix were investigated: identical weights, -(log
10 P) from genomewide association study results, squares of SNP effects from random regression BLUP, and variable selection based weights (known as BLUP∣GA). Predictive ability was measured as the correlation between DRP and direct genomic breeding values in five replications of a fivefold cross-validation. Results: Averaged over the three traits, the highest predictive ability (0.366 ± 0.075) was obtained when only genic SNPs from WGS data were used. Predictive abilities with genic SNPs and all SNPs from HD array data were 0.361 ± 0.072 and 0.353 ± 0.074, respectively. Prediction with -(log10 P) or squares of SNP effects as weighting factors for building a genomic relationship matrix or BLUP∣GA did not increase accuracy, compared to that with identical weights, regardless of the SNP set used. Conclusions: Our results show that little or no benefit was gained when using all imputed WGS data to perform genomic prediction compared to using HD array data regardless of the weighting factors tested. However, using only genic SNPs from WGS data had a positive effect on prediction ability. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken.
- Author
-
Guiyan Ni, Strom, Tim M., Pausch, Hubert, Reimer, Christian, Preisinger, Rudolf, Simianer, Henner, and Erbe, Malena
- Subjects
SINGLE nucleotide polymorphisms ,GENOTYPES ,NUCLEOTIDE sequence ,GENE expression ,GENETIC regulation - Abstract
Background: The technical progress in the last decade has made it possible to sequence millions of DNA reads in a relatively short time frame. Several variant callers based on different algorithms have emerged and have made it possible to extract single nucleotide polymorphisms (SNPs) out of the whole-genome sequence. Often, only a few individuals of a population are sequenced completely and imputation is used to obtain genotypes for all sequence-based SNP loci for other individuals, which have been genotyped for a subset of SNPs using a genotyping array. Methods: First, we compared the sets of variants detected with different variant callers, namely GATK, freebayes and SAMtools, and checked the quality of genotypes of the called variants in a set of 50 fully sequenced white and brown layers. Second, we assessed the imputation accuracy (measured as the correlation between imputed and true genotype per SNP and per individual, and genotype conflict between father-progeny pairs) when imputing from high density SNP array data to whole-genome sequence using data from around 1000 individuals from six different generations. Three different imputation programs (Minimac, FImpute and IMPUTE2) were checked in different validation scenarios. Results: There were 1,741,573 SNPs detected by all three callers on the studied chromosomes 3, 6, and 28, which was 71.6 % (81.6 %, 88.0 %) of SNPs detected by GATK (SAMtools, freebayes) in total. Genotype concordance (GC) defined as the proportion of individuals whose array-derived genotypes are the same as the sequence-derived genotypes over all non-missing SNPs on the array were 0.98 (GATK), 0.97 (freebayes) and 0.98 (SAMtools). Furthermore, the percentage of variants that had high values (>0.9) for another three measures (non-reference sensitivity, non-reference genotype concordance and precision) were 90 (88, 75) for GATK (SAMtools, freebayes). With all imputation programs, correlation between original and imputed genotypes was >0.95 on average with randomly masked 1000 SNPs from the SNP array and >0.85 for a leave-one-out cross-validation within sequenced individuals. Conclusions: Performance of all variant callers studied was very good in general, particularly for GATK and SAMtools. FImpute performed slightly worse than Minimac and IMPUTE2 in terms of genotype correlation, especially for SNPs with low minor allele frequency, while it had lowest numbers in Mendelian conflicts in available father-progeny pairs. Correlations of real and imputed genotypes remained constantly high even if individuals to be imputed were several generations away from the sequenced individuals. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.