1. Three-metal ion mechanism of cross-linked and uncross-linked DNA polymerase β: A theoretical study.
- Author
-
Chu, Wen-Ting, Suo, Zucai, and Wang, Jin
- Subjects
DNA polymerases ,EXCISION repair ,DNA replication ,CHEMICAL reactions ,MOLECULAR dynamics ,DNA synthesis - Abstract
In our recent publication, we have proposed a revised base excision repair pathway in which DNA polymerase β (Polβ) catalyzes Schiff base formation prior to the gap-filling DNA synthesis followed by β-elimination. In addition, the polymerase activity of Polβ employs the "three-metal ion mechanism" instead of the long-standing "two-metal ion mechanism" to catalyze phosphodiester bond formation based on the fact derived from time-resolved x-ray crystallography that a third Mg
2+ was captured in the polymerase active site after the chemical reaction was initiated. In this study, we develop the models of the uncross-linked and cross-linked Polβ complexes and investigate the "three-metal ion mechanism" vs the "two-metal ion mechanism" by using the quantum mechanics/molecular mechanics molecular dynamics simulations. Our results suggest that the presence of the third Mg2+ ion stabilizes the reaction-state structures, strengthens correct nucleotide binding, and accelerates phosphodiester bond formation. The improved understanding of Polβ's catalytic mechanism provides valuable insights into DNA replication and damage repair. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF