1. Comparative morphological assessment and phylogenetic significance of the wing base articulation in Psylloidea (Insecta, Hemiptera, Sternorrhyncha).
- Author
-
Daniel Burckhardt, Adeline Soulier-Perkins, and Thierry Bourgoin
- Subjects
JUMPING plant-lice ,INSECTS ,PHYLOGENY ,ELECTRON microscopy - Abstract
Abstract  The wing articulation sclerites, as well as wing base environment, of phylogenetically distant Psylloidea taxa were examined by optical and electron microscopy in order to estimate the phylogenetic significance of observed morphological patterns. The basiradial bridge is strongly developed and links the fused humeral plate, basisubcostale, basiradiale and second axillary sclerite to the fused veins R  M  Cu. The proximal median plate has a vertical orientation, which may have a role in moving the wing forward and backward. The weak sclerotization posteriad of the second axillary sclerite and anteriad to the third axillary sclerite facilitates the backward movement of the wing. The horizontal hinge (= basal hinge), the vertical hinge and the torsional hinge are the most important fold- and flexion-lines for the mobility of the wing, whereas humeral folds and the anterior axillary fold-line play a minor role. The basalare presents two horns or processes that are autapomorphic traits for the superfamily Psylloidea. The monophyly of Psylloidea is also supported by the absence of the subalare, of the median notal wing process and of the anterior arm of the third axillary sclerite (lacking articulation with second axillary sclerite). Major interspecific variations are observed in tegula, first axillary sclerite and basalare shape and size. The second distal median plate is absent in Homotoma ficus (Homotomidae) and Glycaspis brimblecombei (Spondyliaspidinae), whereas it is present in Calophya schini (Calophyidae) and Psylla buxi (Psyllinae/Arytaininae); the presence of this sclerite could be a synapomorphy linking Calophyidae and the âpsyllid assemblageâ. [ABSTRACT FROM AUTHOR]
- Published
- 2008