1. Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning.
- Author
-
Wei-Feng Qu, Meng-Xin Tian, Jing-Tao Qiu, Yu-Cheng Guo, Chen-Yang Tao, Wei-Ren Liu, Zheng Tang, Kun Qian, Zhi-Xun Wang, Xiao-Yu Li, Wei-An Hu, Jian Zhou, Jia Fan, Hao Zou, Ying-Yong Hou, and Ying-Hong Shi
- Subjects
DEEP learning ,HEPATOCELLULAR carcinoma ,CONVOLUTIONAL neural networks ,ARTIFICIAL intelligence ,MULTIVARIATE analysis ,SIGNAL convolution - Abstract
Background: Postoperative recurrence impedes the curability of early-stage hepatocellular carcinoma (E-HCC). We aimed to establish a novel recurrencerelated pathological prognosticator with artificial intelligence, and investigate the relationship between pathological features and the local immunological microenvironment. Methods: A total of 576 whole-slide images (WSIs) were collected from 547 patients with E-HCC in the Zhongshan cohort, which was randomly divided into a training cohort and a validation cohort. The external validation cohort comprised 147 Tumor Node Metastasis (TNM) stage I patients from The Cancer Genome Atlas (TCGA) database. Six types of HCC tissues were identified by a weakly supervised convolutional neural network. A recurrence-related histological score (HS) was constructed and validated. The correlation between immune microenvironment and HS was evaluated through extensive immunohistochemical data. Results: The overall classification accuracy of HCC tissues was 94.17%. The Cindexes of HS in the training, validation and TCGA cohorts were 0.804, 0.739 and 0.708, respectively. Multivariate analysis showed that the HS (HR= 4.05, 95% CI: 3.40-4.84) was an independent predictor for recurrence-free survival. Patients in HS high-risk group had elevated preoperative alpha-fetoprotein levels, poorer tumor differentiation and a higher proportion of microvascular invasion. The immunohistochemistry data linked the HS to local immune cell infiltration. HS was positively correlated with the expression level of peritumoral CD14
+ cells (p= 0.013), and negatively with the intratumoral CD8+ cells (p< 0.001). Conclusions: The study established a novel histological score that predicted short-term and long-term recurrence for E-HCCs using deep learning, which could facilitate clinical decision making in recurrence prediction and management. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF