1. Lactobacillus fermentum ZS09 Mediates Epithelial–Mesenchymal Transition (EMT) by Regulating the Transcriptional Activity of the Wnt/β-Catenin Signalling Pathway to Inhibit Colon Cancer Activity.
- Author
-
Liu, Jia, Chen, Xiufeng, Zhou, Xianrong, Yi, Ruokun, Yang, Zhennai, and Zhao, Xin
- Subjects
LACTOBACILLUS fermentum ,CELLULAR signal transduction ,COLON cancer ,EPITHELIAL-mesenchymal transition ,ENZYME-linked immunosorbent assay ,DEXTRAN ,CADHERINS - Abstract
purpose of this paper was to study the effect of Lactobacillus fermentum ZS09 (L. fermentum ZS09) on the EMT pathway in mouse with azoxymethane/dextran sulfate sodium salt (AOM/DSS) induced colon cancer and the potential underlying mechanism. Materials and Methods: In this study, a mouse colon cancer model was established through intraperitoneal injection of 10 mg/kg azoxymethane (AOM) and three cycles of 2.5% dextran sulfate sodium salt (DSS) in the drinking water. H&E staining, enzyme-linked immunosorbent assay (ELISA), real-time fluorescent quantitative PCR (RT-qPCR) and Western blotting (WB) were used to study the antitumour mechanisms of L. fermentum ZS09 through the EMT pathway. Results: The results of this study showed that compared with the model group, the high-dose L. fermentum ZS09 intervention group exhibited decreased serum levels of MMP-9, TNF-α, IL-6R, Ang-2 and VEGFR-2 and increased contents of DKK1 (P< 0.05). The expression of Wnt/β-catenin signalling pathway-related genes (Dv1, GSK-3β, β-catenin, c-myc, cyclinD1, Vim, and MMP-9) was significantly reduced, and the gene expression levels of APC, CDH1, and Axin were increased. The levels of related proteins (β-catenin, N-cadherin, and VEGF) were downregulated, and the levels of p-β-catenin and E-cadherin were upregulated. Conclusion: The results indicate that L. fermentum ZS09 could inhibit EMT and angiogenesis pathways by inhibiting the Wnt/β-catenin signalling pathway, which could inhibit tumour metastasis. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF