1. Behaviour-driven motion synthesis
- Author
-
Pairet Artau, Èric, Petillot, Yvan, and Mistry, Michael
- Abstract
Heightened demand for alternatives to human exposure to strenuous and repetitive labour, as well as to hazardous environments, has led to an increased interest in real-world deployment of robotic agents. Targeted applications require robots to be adept at synthesising complex motions rapidly across a wide range of tasks and environments. To this end, this thesis proposes leveraging abstractions of the problem at hand to ease and speed up the solving. We formalise abstractions to hint relevant robotic behaviour to a family of planning problems, and integrate them tightly into the motion synthesis process to make real-world deployment in complex environments practical. We investigate three principal challenges of this proposition. Firstly, we argue that behavioural samples in form of trajectories are of particular interest to guide robotic motion synthesis. We formalise a framework with behavioural semantic annotation that enables the storage and bootstrap of sets of problem-relevant trajectories. Secondly, in the core of this thesis, we study strategies to exploit behavioural samples in task instantiations that differ significantly from those stored in the framework. We present two novel strategies to efficiently leverage offline-computed problem behavioural samples: (i) online modulation based on geometry-tuned potential fields, and (ii) experience-guided exploration based on trajectory segmentation and malleability. Thirdly, we demonstrate that behavioural hints can be extracted on-the-fly to tackle highlyconstrained, ever-changing complex problems, from which there is no prior knowledge. We propose a multi-layer planner that first solves a simplified version of the problem at hand, to then inform the search for a solution in the constrained space. Our contributions on efficient motion synthesis via behaviour guidance augment the robots' capabilities to deal with more complex planning problems, and do so more effectively than related approaches in the literature by computing better quality paths in lower response time. We demonstrate our contributions, in both laboratory experiments and field trials, on a spectrum of planning problems and robotic platforms ranging from high-dimensional humanoids and robotic arms with a focus on autonomous manipulation in resembling environments, to high-dimensional kinematic motion planning with a focus on autonomous safe navigation in unknown environments. While this thesis was motivated by challenges on motion synthesis, we have explored the applicability of our findings on disparate robotic fields, such as grasp and task planning. We have made some of our contributions open-source hoping they will be of use to the robotics community at large.
- Published
- 2022