Cholinesterase inhibitors are currently the most established treatment strategy in Alzheimer's disease. The treatment effect appears mainly to be symptomatic. Effects on progression of the disease following long term treatment, and possible neuroprotective effects, have been investigated. Delay until nursing home placement has been reported. Three cholinesterase inhibitors, tacrine, donepezil and rivastigmine, are in clinical use. Other cholinesterase inhibitors, such as galantamine (galanthamine), metrifonate, physostigmine, eptastigmine, are currently under clinical evaluation. So far the efficacy appears to be comparable between the various cholinesterase inhibitors; treatment for up to 6 months has produced an improvement in Alzheimer's Disease Assessment Scale - Cognitive Subscale score (ADAS-cog) of between 1.8 and 4.9 in patients with Alzheimer's disease. Tacrine, donepezil, galantamine and physostigmine are reversible inhibitors of acetylcholinesterase and butyrylcholinesterase, while metrifonate is considered to be an irreversible inhibitor and rivastigmine a pseudoirreversible inhibitor. Tacrine and physostigmine have lower bioavailability, 17 to 37% and 3 to 8%, respectively, than the other cholinesterase inhibitors such as rivastigmine, galantamine and donepezil (40 to 100%). The elimination half-life is considerably longer for donepezil (70 to 80h) in comparison to most of the other cholinesterase inhibitors (0.3 to 12h). Donepezil is therefore administered once daily in comparison to rivastigmine which is administered twice daily and tacrine which is administered 4 times daily. Simultaneous food intake lowers the plasma concentration of tacrine and reduces the adverse effects of rivastigmine. Drugs like theophylline and cimetidine have been reported to change the pharmacokinetics of tacrine and donepezil. In contrast, concomitant medication with various drugs with rivastigmine does not seem to cause any drug interactions in patients with Alzheimer's disease.Tacrine, donepezil and galantamine are metabolised via the cytochrome P450 (CYP) liver enzymes. Active metabolites are known for tacrine and galantamine. Rivastigmine is not metabolised via CYP enzymes, but via esterases and is excreted in the urine. Tacrine is associated with hepatotoxicity while other cholinesterase inhibitors seem devoid this adverse effect. Increased liver enzyme values have been observed in 49% of patients with Alzheimer's disease treated with tacrine. Rechallenge with tacrine reduces the incidence of elevated liver enzyme levels. Peripheral cholinergic adverse effects are common for the cholinesterase inhibitors, with a n incidence ranging between 7 to 30% For some cholinesterase inhibitors, such as rivastigmine, the cholinergic adverse effects such as nausea, vomiting, dizziness, diarrhoea and abdominal pain can be reduced by slowing the rate of dose titration. [ABSTRACT FROM AUTHOR]