1. Structural and room-temperature ferromagnetic properties of Fe-doped CuO nanocrystals.
- Author
-
Youxia Li, Mei Xu, Liqing Pan, Yaping Zhang, Zhengang Guo, and Chong Bi
- Subjects
- *
NANOCRYSTALS , *X-ray diffraction , *SEMICONDUCTORS , *MAGNETIC fields , *SPINTRONICS - Abstract
Fe-doped CuO (Cu1-xFexO) nanocrystals (NCs) (x=0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) are prepared by using the urea nitrate combustion method. X-ray diffraction (XRD) analysis confirmed the monoclinic structure of CuO. Single-phase structure is obtained for the 0%–20% Fe-doped CuO, whereas for the 25% and 30% Fe-doped CuO material, secondary phase, α-Fe2O3, is presented. Rietveld refinements of XRD data revealed that with an increase in Fe doping level, there is a monotonic increase in cation vacancies in the Fe-doped samples. X-ray photoelectron spectroscopy measurements on the Cu0.98Fe0.02O sample revealed that the Cu2+ sites are partly substituted by Fe3+ ions. The microstructure is investigated by high-resolution transmission electron microscopy. The magnetic hysteresis loops and the temperature dependence of magnetization of the samples indicated that the samples are mictomagnetic of ferromagnetic domains originated from ferromagnetic coupling between the doping Fe ions in Cu1-xFexO NCs randomly distributed in the antiferromagnetic CuO matrix. The Curie temperature of the ferromagnetic phase is higher than 400 K for all Fe-doped CuO samples. The ferromagnetic behavior of the samples is discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF