1. Discovering Glioma Tissue through Its Biomarkers' Detection in Blood by Raman Spectroscopy and Machine Learning.
- Author
-
Vrazhnov, Denis, Mankova, Anna, Stupak, Evgeny, Kistenev, Yury, Shkurinov, Alexander, and Cherkasova, Olga
- Subjects
- *
GLIOMAS , *MACHINE learning , *GLIOBLASTOMA multiforme , *BLOOD serum analysis , *BRAIN tumors , *SPECTRAL line broadening , *RAMAN spectroscopy - Abstract
The most commonly occurring malignant brain tumors are gliomas, and among them is glioblastoma multiforme. The main idea of the paper is to estimate dependency between glioma tissue and blood serum biomarkers using Raman spectroscopy. We used the most common model of human glioma when continuous cell lines, such as U87, derived from primary human tumor cells, are transplanted intracranially into the mouse brain. We studied the separability of the experimental and control groups by machine learning methods and discovered the most informative Raman spectral bands. During the glioblastoma development, an increase in the contribution of lactate, tryptophan, fatty acids, and lipids in dried blood serum Raman spectra were observed. This overlaps with analogous results of glioma tissues from direct Raman spectroscopy studies. A non-linear relationship between specific Raman spectral lines and tumor size was discovered. Therefore, the analysis of blood serum can track the change in the state of brain tissues during the glioma development. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF