Simple Summary: The invasive and accidently introduced insect, the spotted lanternfly, is spreading rapidly and becoming abundant in the mid-Atlantic region of the USA. Though this insect prefers to feed on the also invasive tree-of-heaven, its ability to feed on other native and crop plant species is concerning, and therefore eradication and control efforts are underway. These efforts include targeting the difficult to control tree-of-heaven for removal. Recently, researchers have found that a naturally occurring fungus effectively kills the tree-of-heaven and work towards making this fungus publically available is ongoing. Therefore, we tested whether the spotted lanternfly is capable of spreading the pathogen between symptomatic fungus-inoculated tree-of-heaven seedlings or plant material to healthy tree-of-heaven seedlings in a controlled laboratory setting. In these conditions, we found no evidence that this transmission occurred. This included monitoring the seedlings for symptoms and sampling the seedlings and the insects for the fungus. This lack of transmission may indicate that the spotted lanternfly cannot help spread this fungus to other tree-of-heaven. With the recent introduction of the non-native spotted lanternfly (Lycorma delicatula) to the USA, research and concern regarding this insect is increasing. Though L. delicatula is able to feed on many different plant species, its preference for the invasive tree-of-heaven (Ailanthus altissima) is apparent, especially during its later life stage. Therefore, management focused on A. altissima control to help limit L. delicatula establishment and population growth has become popular. Unfortunately, the control of A. altissima is difficult. Verticillium nonalfalfae, a naturally occurring vascular-wilt pathogen, has recently received attention as a potential biological control agent. Therefore, we studied if L. delicatula fourth instars or adults could vector V. nonalfalfae from infected A. altissima material to healthy A. altissima seedlings in a laboratory setting. We were unable to re-isolate V. nonalfalfae from the 45 A. altissima seedlings or from the 225 L. delicatula utilized in this experiment. We therefore, found no support that L. delicatula could effectively vector this pathogen between A. altissima in laboratory conditions. Since L.delicatula's ability to vector V. nonalfalfae has implications for the dissemination of both this beneficial biological control and other similar unwanted plant pathogens, future research is needed to confirm these findings in a field setting. [ABSTRACT FROM AUTHOR]