The use of multiple-locus variable-number analysis (MLVA) of tandem repeats (TRs) for subtyping Listeria monocytogenes has proven to be reliable and fast. This study determined the MLVA genotypes of 60 isolates of L. monocytogenes recovered from cattle farms, abattoirs, and retail outlets in Gauteng province, South Africa. The distribution of the 60 L. monocytogenes isolates analyzed by type of sample was as follows: raw beef (28, 46.7%), ready-to-eat beef products (9, 15.0%), beef carcass swabs (9, 15.0%), cattle environment (6, 10.0%), and cattle feces (8, 13.3%). The serogroups of the isolates were determined using PCR and the MLVA genotypes based on six selected loci. The frequency of the 60 serogroups detected was as follows: 1/2a-3a (IIa) (27, 45.0%); 4b-4d-4e (1Vb) (24, 40.0%); 1/2c-3c (IIc) (8, 13.3%); and 1/2b-3b (IIb) (1, 1.7%). MLVA successfully clustered genetically related isolates and differentiated nonrelated isolates, irrespective of their sources, sample types, and serogroups, as demonstrated by 16 MLVA pattern types detected. For serogroup 4b-4d-4e (IVb), there was no variation in TRs LM-TR2, LM-TR4, and LM-TR6, which each contained only one allele (02, 00, and 93, respectively). However, across the sources and sample types of isolates, there was variation in serogroup 4b-4d-4e (IVb): LM-TR1 contained 00, 03, and 05; LM-TR3 contained 14, 20, and 22; and LM-TR5 contained 14, 21, and 25. Similar patterns of variation in the TRs were detected in the other serogroups (1/2a-3a, 1/2b-3b, and 1/2c-3c). BioNumeric data analysis identified at least five types in Gauteng province. MLVA epidemiologically clustered the related isolates and differentiated unrelated isolates. MLVA genotypes of L. monocytogenes in South Africa were investigated. Serogroups detected were 1/2a-3a (IIa), 4b-4d-4e (1Vb), 1/2c-3c (IIc), and 1/2b-3b (IIb). Sixteen MLVA pattern types and four serogroups were detected. MLVA type I was predominant in serogroups 1/2a-3a (IIa), 1/2b-3b (IIb), and 1/2b-3c (IIc). MLVA genotyping of L. monocytogenes is an important molecular epidemiological tool. [ABSTRACT FROM AUTHOR]