Köster, Pamela C., Renelies-Hamilton, Justinn, Dotras, Laia, Llana, Manuel, Vinagre-Izquierdo, Celia, Prakas, Petras, Sneideris, Donatas, Dashti, Alejandro, Bailo, Begoña, Lanza, Marta, Jiménez-Mejías, Alejandra, Muñoz-García, Carlota, Muadica, Aly S., González-Barrio, David, Rubio, José M., Fuentes, Isabel, Ponce-Gordo, Francisco, Calero-Bernal, Rafael, and Carmena, David
Simple Summary: Western chimpanzees are currently listed as a Critically Endangered subspecies. Human encroachment has taken a toll on this great ape due to fragmented habitat and the exchange of pathogens. This epidemiological study investigated the occurrence and genetic diversity of intestinal and blood parasites in faecal samples from wild chimpanzees living in the Dindefelo Community Nature Reserve, Senegal. We paid special attention to potential human-driven sources of infection and transmission pathways. Potential diarrhoea-causing protist parasites (e.g., Cryptosporidium spp., Giardia duodenalis, Entamoeba histolytica) were detected at low infection rates (and densities) or absent, whereas commensals (Entamoeba dispar) or protist of uncertain pathogenicity (Blastocystis sp.) were far more abundant. We detected Sarcocystis spp. in chimpanzee faeces. Blood protist parasites such as Plasmodium spp. and Trypanosoma brucei spp. (the etiological agents of malaria and sleeping sickness, respectively, in humans) were also found at low prevalences, but microfilariae of the nematode Mansonella perstans were frequently found. Molecular analyses primarily revealed host-adapted species/genotypes and an apparent absence of gastrointestinal clinical manifestations in infected chimpanzees. Zoonotic events of still unknown frequency and directionality may have taken part between wild chimpanzees and humans sharing natural habitats and resources. Wild chimpanzee populations in West Africa (Pan troglodytes verus) have dramatically decreased as a direct consequence of anthropogenic activities and infectious diseases. Little information is currently available on the epidemiology, pathogenic significance, and zoonotic potential of protist species in wild chimpanzees. This study investigates the occurrence and genetic diversity of intestinal and blood protists as well as filariae in faecal samples (n = 234) from wild chimpanzees in the Dindefelo Community Nature Reserve, Senegal. PCR-based results revealed the presence of intestinal potential pathogens (Sarcocystis spp.: 11.5%; Giardia duodenalis: 2.1%; Cryptosporidium hominis: 0.9%), protist of uncertain pathogenicity (Blastocystis sp.: 5.6%), and commensal species (Entamoeba dispar: 18.4%; Troglodytella abrassarti: 5.6%). Entamoeba histolytica, Enterocytozoon bieneusi, and Balantioides coli were undetected. Blood protists including Plasmodium malariae (0.4%), Trypanosoma brucei (1.3%), and Mansonella perstans (9.8%) were also identified. Sanger sequencing analyses revealed host-adapted genetic variants within Blastocystis, but other parasitic pathogens (C. hominis, P. malariae, T. brucei, M. perstans) have zoonotic potential, suggesting that cross-species transmission between wild chimpanzees and humans is possible in areas where both species overlap. Additionally, we explored potential interactions between intestinal/blood protist species and seasonality and climate variables. Chimpanzees seem to play a more complex role on the epidemiology of pathogenic and commensal protist and nematode species than initially anticipated. [ABSTRACT FROM AUTHOR]