1. Holographic diffraction-through-aperture spectrum splitting for increased hybrid solar energy conversion efficiency.
- Author
-
Vorndran, Shelby, Russo, Juan M., Wu, Yuechen, Gordon, Michael, and Kostuk, Raymond
- Subjects
- *
HYBRID solar energy systems , *HOLOGRAPHY , *ENERGY conversion , *PHOTOVOLTAIC cells , *BIOMASS energy - Abstract
A holographic module is designed to split light into two spectral bands for hybrid solar energy conversion. Incoming light is either transmitted to a large subsystem receiver or diffracted through an aperture in this receiver toward a second subsystem receiver. The holographic element is simulated using rigorous diffraction and ray-tracing methods. Two applications of the design are described and simulated. A photovoltaic/thermal system with 93% optical efficiency and adjustable subsystem power output ratio is designed to address solar intermittency and provide energy storage. A photovoltaic system added to an alga biofuel operation significantly increases energy output while maintaining 92% of the original algae yield. The energy return on investment of this photovoltaic/biofuel system is 2.4× greater than that of the biofuel system alone, leading to economically viable operation. Modifications to the standard holographic lens provide additional increases in spectrum-splitting capability, optical efficiency, and energy conversion efficiency. The diffraction-through-aperture concept is demonstrated as a successful approach to spectrum splitting for hybrid solar applications. Copyright © 2014 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF