1. Simultaneous vacuum UV and broadband UV–NIR plasma spectroscopy to improve the LIBS analysis of light elements.
- Author
-
Pavel Veis, Alicia Marín-Roldán, and Jaroslav Krištof
- Subjects
- *
PLASMA spectroscopy , *VACUUM ultraviolet spectroscopy , *SILICON , *BORON , *SULFUR - Abstract
This work studies the ability of laser-induced breakdown spectroscopy (LIBS) to improve the detection of light elements such as silicon (Si), boron (B), carbon (C), and sulfur (S). In this study, the plasma decay over time was simulated using the LIBS application provided by NIST, obtaining spectra in the spectral range ranging from the vacuum ultraviolet (VUV) to the near infrared (NIR) region. Since the electron density (ne) and plasma temperature (Te) decrease during the decaying process, the intensities of emission lines from neutral, singly ionized, and doubly ionized species were calculated. The results allowed us to determine the range of suitable ne and Te for experimental measurements, and to construct a Saha–Boltzmann (SB) plot using neutral, singly ionized, and doubly ionized species. Samples containing Si, B, C, and S were measured at delays of 100–1000 ns after the laser shot at low pressure (13 mbar) in a helium atmosphere. From the measured data, suitable lines were chosen in the VUV range to calculate the Te of plasma for each sample at different delays. The results demonstrate that due to the inclusion of multiple species across VUV–UV–NIR, an appreciable improvement in the accuracy of Te was obtained, which is an essential factor for calibration-free LIBS (CF-LIBS). [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF