1. Forage Ratio Analysis of the Southern House Mosquito in College Station, Texas.
- Author
-
Komar, Nicholas, Panella, Nicholas A., Golnar, Andrew J., and Hamer, Gabriel L.
- Subjects
- *
CULEX quinquefasciatus , *POLYMERASE chain reaction - Abstract
Culex quinquefasciatus is the principal vector of West Nile virus (WNV) in the South Central United States, yet limited data on host utilization are available. We evaluated host utilization over a 3-month period in 2013 in a residential landscape in College Station, Texas. PCR sequencing of the mitochondrial cytochrome oxidase 1 gene permitted molecular identification of vertebrate bloodmeals to the species level. Forage ratio analysis identified bird species that were overutilized and underutilized by comparing community feeding index values to expected relative abundance values of bird species, derived from eBird data. Community feeding index values were also used in conjunction with reservoir competence data from the literature to generate reservoir capacity index values, a means of identifying relative importance of vertebrate reservoir hosts. Of 498 blood-engorged Cx. quinquefasciatus, 313 (62.9%) were identified to vertebrate species. The majority (95.5%) of bloodmeals originated from avian species with the remainder from mammals, but not humans. Northern mockingbird (Mimus polyglottos) was the principal host for mosquito feeding in June and July, but northern cardinal (Cardinalis cardinalis) became primary host in August. Forage ratio analysis revealed the overutilization of house finch (Haemorhous mexicanus), American robin (Turdus migratorius), northern mockingbird, northern cardinal, white-winged dove (Zenaida asiatica), and mourning dove (Zenaida macroura). Great-tailed grackle (Quiscalus mexicanus), blue jay (Cyanocitta cristata), and Carolina wren (Thryothorus ludovicianus) were under-utilized relative to availability. Reservoir capacity calculations suggested that northern mockingbird and northern cardinal were the principal amplifiers in the study area. These data identify the primary avian species contributing to the enzootic amplification of WNV in East-Central Texas and reveal that the heavy feeding on moderately competent hosts and no feeding on humans likely limit epidemics in this region. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF