1. Structural and functional characterization of cellulose synthase proteins (CesA) in rice and their regulation via brassinosteroid signaling under arsenate stress.
- Author
-
Shabab, Ziya, Ghoshe, Piyush Wamanrao, and Sarada, Dronamraju V. L.
- Abstract
Key message: CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat. Cellulose synthase and cellulose synthase-like (CesA/CSL) gene family build major constituent of cell wall polysaccharides, however, their interaction and responses to arsenic stress remains enigmatic. The current study describes the structural, functional, and regulatory behavior of CesA proteins using in silico tools with datasets of 367 sequences and an in vitro germination model. Interpro analysis revealed six types of domains, further classified into two major clades: cellulose synthase and glycosyl transferase family group 2 exhibiting polyphyletic grouping. The MEME suite analysis identified the frequent occurrence of “QXXRW” among 35 identified conserved motifs. Further observation of the regulatory mechanism of CesA identified 36 types of trans-regulatory elements involved in hormone signaling, developmental regulation, stress response, etc. Among these, hormone signaling comprises of 7 types of elements, with BES1 being less studied, sequences containing BES1 sites were selected. Additionally, 56 cis-regulatory elements were identified. Arsenate exposure increased transcript level of CesA and BES1/BZR1 compared to control. Western blot analysis revealed a significant downregulation of the BZR1 protein expression in arsenate stressed seedlings. This research shed light on the regulation of CesA mediated by (BES1/BZR1) and brassinosteroid signalling. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF