1. Recent advances in heavy metal recovery from wastewater by biogenic sulfide precipitation.
- Author
-
Kumar, Manoj, Nandi, Moumita, and Pakshirajan, Kannan
- Subjects
- *
HEAVY metals , *SULFIDES , *SULFATE-reducing bacteria , *DYE-sensitized solar cells , *FLUIDIZED bed reactors , *METAL nanoparticles , *SEWAGE - Abstract
Biological sulfide precipitation by sulfate reducing bacteria (SRB) is an emerging technique for the recovery of heavy metals from metal contaminated wastewater. Advantages of this technique include low capital cost, ability to form highly insoluble salts, and capability to remove and recover heavy metals even at very low concentrations. Therefore, sulfate reduction under anaerobic conditions has become a suitable alternative for the treatment of wastewaters that contain metals. However, bioreactor configurations for recovery of metals from sulfate rich metallic wastewater have not been explored widely. Moreover, the recovered metal sulfide nanoparticles could be applied in various fields such as solar cells, dye degradation, electroplating, etc. Hence, metal recovery in the form of nanoparticles from wastewater could serve as an incentive for industries. The simultaneous metal removal and recovery can be achieved in either a single-stage or multistage systems. This paper aims to present an overview of the different bioreactor configurations for the treatment of wastewater containing sulfate and metal along with their advantages and drawbacks for metal recovery. Currently followed biological strategies to mitigate sulfate and metal rich wastewater are evaluated in detail in this review. • Metal recovery using single and multi-stage systems is reported. • Metallic wastewater is an excellent source for metal biorecovery. • Very high metal recovery can be achieved using inverse fluidized bed reactor. • Recovered metals in the form of nanoparticles find diverse industrial applications. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF