1. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells.
- Author
-
Chatain, N, Ziegler, P, Fahrenkamp, D, Jost, E, Moriggl, R, Schmitz-Van de Leur, H, and Müller-Newen, G
- Subjects
- *
PROTEIN-tyrosine kinases , *SRC gene , *STAT proteins , *ABL1 gene , *CHIMERIC proteins , *CHRONIC myeloid leukemia , *PHOSPHORYLATION - Abstract
Persistent activation of the Abl tyrosine kinase in the BCR-ABL fusion protein is the major cause of chronic myeloid leukemia (CML). Among many other substrates BCR-ABL phosphorylates STAT5 and Src family kinases (SFK). Activated pSTAT5 is essential for initial transformation and maintenance of the disease. Cytokine-induced phosphorylation on tyrosine 694 typically leads to nuclear accumulation of pSTAT5 and target gene expression. We verified that in BCR-ABL-positive progenitor cells from a CML patient and in K562 cells pSTAT5 is cytoplasmic. However, upon ectopic expression of BCR-ABL p210 in non-myeloid cells, co-transfected STAT5A is phosphorylated on Y694 and localized in the nucleus arguing for an additional factor mediating cytoplasmic retention in CML cells. Expression of the SFK v-Src, Hck or Lyn together with STAT5A results in phosphorylation on Y694 and cytoplasmic retention. Upon coexpression of BCR-ABL and individual SFK the cytoplasmic retention of activated STAT5A mediated by v-Src and Hck but not Lyn is dominant over nuclear translocation induced by BCR-ABL. Cytoplasmic retention depends on the kinase activity of SFK and is mediated through the interaction of the SH2 domain of STAT5A with the SFK. Interestingly, nuclear accumulation of STAT5A as a result of activation by FLT3-ITD, an oncogene found in acute myeloid leukemia, cannot be prevented by coexpression of SFK. Importantly, inhibition of SFK in K562 cells restored nuclear accumulation of pSTAT5A, enhanced STAT5 target gene expression and increased colony formation. Thus, SFK mediate cytoplasmic retention of pSTAT5A in BCR-ABL-positive cells. Cytoplasmic pSTAT5A in CML cells might balance the controversial functions of STAT5 in cellular senescence and differentiation versus G1/S progression and survival. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF