1. Aging Trajectories in Different Body Systems Share Common Environmental Etiology: The Healthy Aging Twin Study (HATS).
- Author
-
Moayyeri, Alireza, Hart, Deborah J., Snieder, Harold, Hammond, Christopher J., Spector, Timothy D., and Steves, Claire J.
- Subjects
- *
TWINS , *AGING , *PANEL analysis , *ACQUISITION of data , *STRUCTURAL equation modeling , *COHORT analysis , *HEALTH status indicators , *LONGITUDINAL method , *MULTIVARIATE analysis , *RESEARCH funding - Abstract
Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal clinical data were collected on 3,508 female twins in the TwinsUK registry (complete pairs:740 monozygotic (MZ), 986 dizygotic (DZ), mean age at entry 48.9 ± 10.4, range 18–75 years; mean follow-up 10.2 ± 2.8 years, range 4–17.8 years). Panel data on multiple age-related variables were used to estimate biological ages for each individual at each time point, in linear mixed effects models. A weighted average approach was used to combine variables within predefined body system groups. Aging trajectories for each system in each individual were then constructed using linear modeling. Multivariate structural equation modeling of these aging trajectories showed low genetic effects (heritability), ranging from 2% in metabolic aging to 22% in cardiovascular aging. However, we found a significant effect of shared environmental factors on the variations in aging trajectories in cardiovascular (54%), skeletal (34%), morphometric (53%), and metabolic systems (53%). The remainder was due to environmental factors unique to each individual plus error. Multivariate Cholesky decomposition showed that among aging trajectories for various body systems there were significant and substantial correlations between the unique environmental latent factors as well as shared environmental factors. However, there was no evidence for a single common factor for aging. This study, the first of its kind in aging, suggests that diverse organ systems share non-genetic sources of variance for aging trajectories. Confirmatory studies are needed using population-based twin cohorts and alternative methods of handling missing data. [ABSTRACT FROM PUBLISHER]
- Published
- 2016
- Full Text
- View/download PDF