1. dMAD7 is a promising tool for targeted gene regulation in the methylotrophic yeast Komagataella phaffii.
- Author
-
Krappinger, Julian C., Aguilar Gomez, Carla M., Hoenikl, Andrea, Schusterbauer, Veronika, Hatzl, Anna-Maria, Feichtinger, Julia, and Glieder, Anton
- Subjects
- *
GENE expression , *BIOTECHNOLOGY , *WHOLE genome sequencing , *GREEN fluorescent protein , *GENETIC regulation - Abstract
The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression. • We report the first use of dMAD7 in K. phaffii to regulate the expression of enhanced green fluorescent protein (eGFP). • A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. • Whole genome sequencing and RNA-sequencing were used to assess the integration events and to characterize the strains. • Our findings conclusively demonstrate the utility of the dMAD7 system in K. phaffii. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF