Zhou, Xue Meng, Ranathunge, Kosala, Cambridge, Marion L., Dixon, Kingsley W., Hayes, Patrick E., Nikolic, Miroslav, Shen, Qi, Zhong, Hongtao, and Lambers, Hans
Background and aims: Southwest Australia is a biodiversity hotspot, with greatest plant species diversity on the most severely phosphorus (P)-impoverished soils. Here, non-mycorrhizal species with highly-effective carboxylate-releasing P-acquisition strategies coexist with mycorrhizal species that are less effective at accessing P on these soils. Non-mycorrhizal carboxylate-releasing species facilitate P acquisition of mycorrhizal neighbours that are better defended against pathogens. In the Southwest Australian Biodiversity Hotspot, there are also ‘cool spots’ of low-diversity tall mycorrhizal Eucalyptus communities on P-impoverished soils. These Eucalyptus trees obviously do not require facilitation of their P acquisition by carboxylate-releasing neighbours, because these are only a minor component of the low-diversity communities. We hypothesised that in low-diversity tall Eucalyptus forests, mycorrhizal species release carboxylates to acquire P. Thus, they would not depend on facilitation, and must be strong competitors. However, because they would not depend on external mycorrhizal hyphae to acquire P, they would also not be able to access soil organic nitrogen (N), for which they would need external hyphae.Since carboxylates not only mobilise P, but also manganese (Mn), we used leaf Mn concentrations ([Mn]) in the natural habitat to proxy rhizosphere carboxylates. To verify this proxy, we also measured carboxylate exudation of targeted species with high leaf [Mn] using seedlings grown in low-P nutrient solutions.Using these complementary approaches, we confirmed our hypothesis that dominant Eucalyptus species in ‘cool spots’ release carboxylates. Since mineralisation of organic N is associated with fractionation of N, enriching organic N with 15N while nitrate is depleted in 15N, we measured the stable N isotope composition of leaf material. The results show that dominant Eucalyptus species did not access organic N, despite being ectomycorrhizal.The low diversity of tall Eucalyptus forests in southwest Australia can be explained by dominant mycorrhizal species exhibiting a carboxylate-releasing strategy. The tall eucalypts are therefore strong competitors that do not require facilitation, but also do not access organic N.Methods: Southwest Australia is a biodiversity hotspot, with greatest plant species diversity on the most severely phosphorus (P)-impoverished soils. Here, non-mycorrhizal species with highly-effective carboxylate-releasing P-acquisition strategies coexist with mycorrhizal species that are less effective at accessing P on these soils. Non-mycorrhizal carboxylate-releasing species facilitate P acquisition of mycorrhizal neighbours that are better defended against pathogens. In the Southwest Australian Biodiversity Hotspot, there are also ‘cool spots’ of low-diversity tall mycorrhizal Eucalyptus communities on P-impoverished soils. These Eucalyptus trees obviously do not require facilitation of their P acquisition by carboxylate-releasing neighbours, because these are only a minor component of the low-diversity communities. We hypothesised that in low-diversity tall Eucalyptus forests, mycorrhizal species release carboxylates to acquire P. Thus, they would not depend on facilitation, and must be strong competitors. However, because they would not depend on external mycorrhizal hyphae to acquire P, they would also not be able to access soil organic nitrogen (N), for which they would need external hyphae.Since carboxylates not only mobilise P, but also manganese (Mn), we used leaf Mn concentrations ([Mn]) in the natural habitat to proxy rhizosphere carboxylates. To verify this proxy, we also measured carboxylate exudation of targeted species with high leaf [Mn] using seedlings grown in low-P nutrient solutions.Using these complementary approaches, we confirmed our hypothesis that dominant Eucalyptus species in ‘cool spots’ release carboxylates. Since mineralisation of organic N is associated with fractionation of N, enriching organic N with 15N while nitrate is depleted in 15N, we measured the stable N isotope composition of leaf material. The results show that dominant Eucalyptus species did not access organic N, despite being ectomycorrhizal.The low diversity of tall Eucalyptus forests in southwest Australia can be explained by dominant mycorrhizal species exhibiting a carboxylate-releasing strategy. The tall eucalypts are therefore strong competitors that do not require facilitation, but also do not access organic N.Results: Southwest Australia is a biodiversity hotspot, with greatest plant species diversity on the most severely phosphorus (P)-impoverished soils. Here, non-mycorrhizal species with highly-effective carboxylate-releasing P-acquisition strategies coexist with mycorrhizal species that are less effective at accessing P on these soils. Non-mycorrhizal carboxylate-releasing species facilitate P acquisition of mycorrhizal neighbours that are better defended against pathogens. In the Southwest Australian Biodiversity Hotspot, there are also ‘cool spots’ of low-diversity tall mycorrhizal Eucalyptus communities on P-impoverished soils. These Eucalyptus trees obviously do not require facilitation of their P acquisition by carboxylate-releasing neighbours, because these are only a minor component of the low-diversity communities. We hypothesised that in low-diversity tall Eucalyptus forests, mycorrhizal species release carboxylates to acquire P. Thus, they would not depend on facilitation, and must be strong competitors. However, because they would not depend on external mycorrhizal hyphae to acquire P, they would also not be able to access soil organic nitrogen (N), for which they would need external hyphae.Since carboxylates not only mobilise P, but also manganese (Mn), we used leaf Mn concentrations ([Mn]) in the natural habitat to proxy rhizosphere carboxylates. To verify this proxy, we also measured carboxylate exudation of targeted species with high leaf [Mn] using seedlings grown in low-P nutrient solutions.Using these complementary approaches, we confirmed our hypothesis that dominant Eucalyptus species in ‘cool spots’ release carboxylates. Since mineralisation of organic N is associated with fractionation of N, enriching organic N with 15N while nitrate is depleted in 15N, we measured the stable N isotope composition of leaf material. The results show that dominant Eucalyptus species did not access organic N, despite being ectomycorrhizal.The low diversity of tall Eucalyptus forests in southwest Australia can be explained by dominant mycorrhizal species exhibiting a carboxylate-releasing strategy. The tall eucalypts are therefore strong competitors that do not require facilitation, but also do not access organic N.Conclusions: Southwest Australia is a biodiversity hotspot, with greatest plant species diversity on the most severely phosphorus (P)-impoverished soils. Here, non-mycorrhizal species with highly-effective carboxylate-releasing P-acquisition strategies coexist with mycorrhizal species that are less effective at accessing P on these soils. Non-mycorrhizal carboxylate-releasing species facilitate P acquisition of mycorrhizal neighbours that are better defended against pathogens. In the Southwest Australian Biodiversity Hotspot, there are also ‘cool spots’ of low-diversity tall mycorrhizal Eucalyptus communities on P-impoverished soils. These Eucalyptus trees obviously do not require facilitation of their P acquisition by carboxylate-releasing neighbours, because these are only a minor component of the low-diversity communities. We hypothesised that in low-diversity tall Eucalyptus forests, mycorrhizal species release carboxylates to acquire P. Thus, they would not depend on facilitation, and must be strong competitors. However, because they would not depend on external mycorrhizal hyphae to acquire P, they would also not be able to access soil organic nitrogen (N), for which they would need external hyphae.Since carboxylates not only mobilise P, but also manganese (Mn), we used leaf Mn concentrations ([Mn]) in the natural habitat to proxy rhizosphere carboxylates. To verify this proxy, we also measured carboxylate exudation of targeted species with high leaf [Mn] using seedlings grown in low-P nutrient solutions.Using these complementary approaches, we confirmed our hypothesis that dominant Eucalyptus species in ‘cool spots’ release carboxylates. Since mineralisation of organic N is associated with fractionation of N, enriching organic N with 15N while nitrate is depleted in 15N, we measured the stable N isotope composition of leaf material. The results show that dominant Eucalyptus species did not access organic N, despite being ectomycorrhizal.The low diversity of tall Eucalyptus forests in southwest Australia can be explained by dominant mycorrhizal species exhibiting a carboxylate-releasing strategy. The tall eucalypts are therefore strong competitors that do not require facilitation, but also do not access organic N. [ABSTRACT FROM AUTHOR]