Bao H, Ge Y, Zhuang S, Dworkin LD, Liu Z, Gong R, Bao, Hao, Ge, Yan, Zhuang, Shougang, Dworkin, Lance D, Liu, Zhihong, and Gong, Rujun
Clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) like diclofenac (DCLF) is limited by multiple adverse effects, including renal toxicity leading to acute kidney injury. In mice with DCLF-induced nephrotoxicity, TDZD-8, a selective glycogen synthase kinase (GSK)3β inhibitor, improved acute kidney dysfunction and ameliorated tubular necrosis and apoptosis associated with induced cortical expression of cyclooxygenase-2 (COX-2) and prostaglandin E2. This renoprotective effect was blunted but still largely preserved in COX-2-null mice, suggesting that other GSK3β targets beyond COX-2 functioned in renal protection. Indeed, TDZD-8 diminished the mitochondrial permeability transition in DCLF-injured kidneys. In vitro, GSK3β inhibition reinstated viability and suppressed necrosis and apoptosis in DCLF-stimulated tubular epithelial cells. DCLF elicited oxidative stress, enhanced the activity of the redox-sensitive GSK3β, and promoted a mitochondrial permeability transition by interacting with cyclophilin D, a key component of the mitochondrial permeability transition pore. TDZD-8 blocked GSK3β activity and prevented GSK3β-mediated cyclophilin D phosphorylation and the ensuing mitochondrial permeability transition, concomitant with normalization of intracellular ATP. Conversely, ectopic expression of a constitutively active GSK3β abolished the effects of TDZD-8. Hence, inhibition of GSK3β ameliorates NSAID-induced acute kidney injury by induction of renal cortical COX-2 and direct inhibition of the mitochondrial permeability transition. [ABSTRACT FROM AUTHOR]