1. Multi-objective numerical optimization of 3D-printed polylactic acid bio-metamaterial based on topology, filling pattern, and infill density via fatigue lifetime and mass.
- Author
-
Dadashi, Ali and Azadi, Mohammad
- Subjects
- *
POLYLACTIC acid , *FIELD emission electron microscopy , *COMPUTER-aided engineering , *MANUFACTURING processes , *DENSITY , *CHOICE (Psychology) - Abstract
Infill parameters are significant with regard to the overall cost and saving material while printing a 3D model. When it comes to printing time, we can decrease the printing time by altering the infill, which also reduces the total process extent. Choosing the right filling parameters affects the strength of the printed model. In this research, the effect of filling density and infill pattern on the fatigue lifetime of cylindrical polylactic acid (PLA) samples was investigated with finite element modeling and analysis. This causes the lattice structure to be considered macro-scale porosity in the additive manufacturing process. Due to the need for multi-objective optimization of several functions at the same time and the inevitable sacrifice of other objectives, the decision was to obtain a set of compromise solutions according to the Pareto-optimal solution technique or the Pareto non-inferior solution approach. As a result, a horizontally printed rectangular pattern with 60% filling was preferred over the four patterns including honeycomb, triangular, regular octagon, and irregular octagon by considering the sum of mass changes and fatigue lifetime changes, and distance from the optimal point, which is the lightest structure with the maximum fatigue lifetime as an objective function with an emphasis on mass as an important parameter in designing scaffolds and biomedical structures. A new structure was also proposed by performing a structural optimization process using computer-aided design tools and also, computer-aided engineering software by Dassault systems. Finally, the selected samples were printed and their 3D printing quality was investigated using field emission scanning electron microscopy inspection. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF