Laptev and Safronov (Commun Math Phys 292(1):29–54, 2009) conjectured an inequality between the magnitude of eigenvalues of a non-self-adjoint Schrödinger operator on Rd\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {R}^d$$\end{document}, d≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d\ge 2$$\end{document}, and an Lq\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^q$$\end{document} norm of the potential, for any q∈[d/2,d]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\in [d/2,d]$$\end{document}. Frank (Bull Lond Math Soc 43(4):745–750, 2011) proved that the conjecture is true for q∈[d/2,(d+1)/2]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\in [d/2,(d+1)/2]$$\end{document}. We construct a counterexample that disproves the conjecture in the remaining range q∈((d+1)/2,d]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q\in ((d+1)/2,d]$$\end{document}. As a corollary of our main result we show that, for any q>(d+1)/2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q>(d+1)/2$$\end{document}, there is a complex potential in Lq∩L∞\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^q\cap L^{\infty }$$\end{document} such that the discrete eigenvalues of the corresponding Schrödinger operator accumulate at every point in [0,∞)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$[0,\infty )$$\end{document}. In some sense, our counterexample is the Schrödinger operator analogue of the ubiquitous Knapp example in Harmonic Analysis. We also show that it is adaptable to a larger class of Schrödinger type (pseudodifferential) operators, and we prove corresponding sharp upper bounds. [ABSTRACT FROM AUTHOR]