1. Rapid detection and discrimination of chromosome- and MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in Escherichia coli: the MALDIxin test.
- Author
-
Dortet, Laurent, Bonnin, Remy A, Pennisi, Ivana, Furniss, R Christopher D, Mavridou, Despoina A I, Gauthier, Lauraine, Jousset, Agnès B, Dabos, Laura, Bogaerts, Pierre, and Glupczynski, Youri
- Subjects
- *
CHROMOSOME abnormalities , *COLISTIN , *PLASMIDS , *POLYMYXIN , *DRUG resistance in bacteria , *ESCHERICHIA coli - Abstract
Background Polymyxins are currently considered a last-resort treatment for infections caused by MDR Gram-negative bacteria. Recently, the emergence of carbapenemase-producing Enterobacteriaceae has accelerated the use of polymyxins in the clinic, resulting in an increase in polymyxin-resistant bacteria. Polymyxin resistance arises through modification of lipid A, such as the addition of phosphoethanolamine (pETN). The underlying mechanisms involve numerous chromosome-encoded genes or, more worryingly, a plasmid-encoded pETN transferase named MCR. Currently, detection of polymyxin resistance is difficult and time consuming. Objectives To develop a rapid diagnostic test that can identify polymyxin resistance and at the same time differentiate between chromosome- and plasmid-encoded resistances. Methods We developed a MALDI-TOF MS-based method, named the MALDIxin test, which allows the detection of polymyxin resistance-related modifications to lipid A (i.e. pETN addition), on intact bacteria, in <15 min. Results Using a characterized collection of polymyxin-susceptible and -resistant Escherichia coli, we demonstrated that our method is able to identify polymyxin-resistant isolates in 15 min whilst simultaneously discriminating between chromosome- and plasmid-encoded resistance. We validated the MALDIxin test on different media, using fresh and aged colonies and show that it successfully detects all MCR-1 producers in a blindly analysed set of carbapenemase-producing E. coli strains. Conclusions The MALDIxin test is an accurate, rapid, cost-effective and scalable method that represents a major advance in the diagnosis of polymyxin resistance by directly assessing lipid A modifications in intact bacteria. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF