1. Large Scale Air Pollution Estimation Method Combining Land Use Regression and Chemical Transport Modeling in a Geostatistical Framework.
- Author
-
Akita, Yasuyuki, Baldasano, Jose M., Beelen, Rob, Cirach, Marta, de Hoogh, Kees, Hoek, Gerard, Nieuwenhuijsen, Mark, Serre, Marc L., and de Nazelle, Audrey
- Subjects
- *
AIR pollution measurement , *URBAN land use , *REGRESSION analysis , *MAXIMUM entropy method , *BAYESIAN analysis , *MATHEMATICAL models of air quality , *ATMOSPHERIC chemistry , *MATHEMATICAL models - Abstract
In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF