1. Highly Flexible Poly(1,12-dodecylene 5,5′-isopropylidene-bis(ethyl 2-furoate)): A Promising Biobased Polyester Derived from a Renewable Cost-Effective Bisfuranic Precursor and a Long-Chain Aliphatic Spacer.
- Author
-
Zaidi, Sami, Bougarech, Abdelkader, Abid, Majdi, Abid, Souhir, Silvestre, Armando J. D., and Sousa, Andreia F.
- Subjects
- *
FURFURAL , *POLYESTERS , *GLASS transition temperature , *FLEXIBLE packaging , *PACKAGING materials , *THERMAL properties - Abstract
The continuous search for novel biobased polymers with high-performance properties has highlighted the role of monofuranic-based polyesters as some of the most promising for future plastic industry but has neglected the huge potential for the polymers' innovation, relatively low cost, and synthesis easiness of 5,5′-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the platform chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5′-isopropylidene -bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene. This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous character with a glass transition temperature of −6 °C and main maximum decomposition temperature of 340 °C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with the relevant thermal properties makes PDDbF a highly promising material for flexible packaging. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF