The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumor growth in a human xenograft mouse model of endometrial adenocarcinoma. [ABSTRACT FROM AUTHOR]
N-{trans-3-[(5-Cyano-6-methylpyridin-2-yl)oxy]-2,2,4,4-tetramethylcyclobutyl}imidazo[1,2-a]pyrimidine-3-carboxamide (1) was recently identified as a full antagonist of the androgen receptor, demonstrating excellent in vivo tumor growth inhibition in castration-resistant prostate cancer (CRPC). However, the imidazo[1,2-a]pyrimidine moiety is rapidly metabolized by aldehyde oxidase (AO). The present paper describes a number of medicinal chemistry strategies taken to avoid the AO-mediated oxidation of this particular system. Guided by an AO protein structure-based model, our investigation revealed the most probable site of AO oxidation and the observation that altering the heterocycle or blocking the reactive site are two of the more effective strategies for reducing AO metabolism. These strategies may be useful for other drug discovery programs. [ABSTRACT FROM AUTHOR]