1. Uncertain Spatiotemporal Data Management for the Semantic Web
- Author
-
Luyi Bai, Lin Zhu, Luyi Bai, and Lin Zhu
- Subjects
- Semantic Web, Linked data, Database management, Data structures
- Abstract
In the world of data management, one of the most formidable challenges faced by academic scholars is the effective handling of spatiotemporal data within the semantic web. As our world continues to change dynamically with time, nearly every aspect of our lives, from environmental monitoring to urban planning and beyond, is intrinsically linked to time and space. This synergy has given rise to an avalanche of spatiotemporal data, and the pressing question is how to manage, model, and query this voluminous information effectively. The existing approaches often fall short in addressing the intricacies and uncertainties that come with spatiotemporal data, leaving scholars struggling to unlock its full potential. Uncertain Spatiotemporal Data Management for the Semantic Web is the definitive solution to the challenges faced by academic scholars in the realm of spatiotemporal data. This book offers a visionary approach to an all-encompassing guide in modeling and querying spatiotemporal data using innovative technologies like XML and RDF. Through a meticulously crafted set of chapters, this book sheds light on the nuances of spatiotemporal data and also provides practical solutions that empower scholars to navigate the complexities of this domain effectively. This book caters specifically to the academic community, offering in-depth insights, innovative frameworks, and real-world applications that unlock the true potential of spatiotemporal data. With a comprehensive range of topics, from modeling to prediction and query optimization, this book equips scholars with the knowledge and tools they need to pioneer advancements in their field. Seasoned researchers and budding academics alike will find guidance within the pages of Uncertain Spatiotemporal Data Management for the Semantic Web along a transformative journey towards harnessing the power of spatiotemporal data in the semantic web, shaping the future of data management.
- Published
- 2024